Training Models: Black Box

Michael Claudius, Associate Professor, Roskilde with respect to Jens Peter Andersen

26-03-2021

Sjællands Erðvervsakademi

Training models: Opening The Black Box

- It is about understanding what goes on behind the stage when models are trained and fitted to labels!
- 1. Linear regression refreshed
- 2. Define the cost function
- 3. Minimize the cost function
 - Closed Form Solution (Normal Equation)
 - Gradient Descent Solutions: Batch GD, Stochastic GD (SGD), Mini-Batch GD
- 4. Regularize Linear Models to avoid vulnerabilities
 - Overfitting, Underfitting, Learning Curves, Early Stopping

Linear model – refreshing cost-per-click

Hypothesis function in general:

 $\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Where:

- \hat{y} is the predicted value e.g. We want to predict 'total clicks per day'
- *n* is the number of features e.g. we may have only 1 feature, 'cost per click'
- x_i is the *i*th feature value e.g. x_1 may represent the value of a 'cost per click'
- θ_{j} is the *j*th model parameter e.g. only θ_{0} and θ_{1} are relevant with only one feature

Linear model – refreshing 50StartUps

Hypothesis function for linear model in general:

 $\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Where:

- ŷ the predicted value e.g. Want to predict "Profit"
- *n* the number of features e.g. 3 features, "*R*&DCost", "Administration", "Marketing Spend"
- x_i is the *i*th feature value e.g. X_1 represent the value of a "R&DCost",
- θ_{j} is the *j*th model parameter e.g. only θ_{0} , θ_{1} , θ_{2} , θ_{3} are relevant when 3 features

OR on vectorized form

Equation 4-2. Linear Regression model prediction (vectorized form)

 $\hat{\mathbf{y}} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$

In this equation:

- θ is the model's *parameter vector*, containing the bias term θ_0 and the feature weights θ_1 to θ_n .
- **x** is the instance's *feature vector*, containing x_0 to x_n , with x_0 always equal to 1.
- $\theta \cdot \mathbf{x}$ is the dot product of the vectors θ and \mathbf{x} , which is of course equal to $\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$.
- h_{θ} is the hypothesis function, using the model parameters θ .

Zealand

Linear model – refreshing 50StartUps

- 50StartUps Found
- intercept_ (θ_0)
- coef_ ($\theta_{1,} \theta_{2,} \theta_{3}$)

IN [40]. 🖡	intersection lin_reg.intercept_ intersection	lin_reg.coef_
Out[46]:	array([48954.88930169])	Out[49]: array([[0.80929046, -0.04210973, 0.0377024

- Question is: How did LinearRegression find the weight values?
- Answer follows now!

Zealand

Define The Cost Function

- Performance measure: Root Mean Square Error (RMSE)
- Need to a find a value of θ which minimize the RMSE
- Cost function: Mean Square Error (MSE), as it results in the same minimum and values as RMSE

RMSE(**X**, h) = $\sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(h(\mathbf{x}^{(i)}) - y^{(i)}\right)^2$

Equation 4-3. MSE cost function for a Linear Regression model

$$MSE(\mathbf{X}, h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{\Theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)} \right)^2$$

• We are lucky. There are several solutions for this!

Minimize The Cost Function MSE

Minimize the cost function solutions using

- Closed Form Solution (Normal Equation)
- Gradient Descent Solution:
 - Batch GD,
 - Stochastic GD (SGD),
 - Mini-Batch GD
- All solutions have advantages and disadvantages

Closed Form Solution

The Normal Equation calculates the values of θ directly using some matrix manipulations and multiplications

Equation 4-4. Normal Equation

 $\widehat{\boldsymbol{\theta}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \quad \mathbf{X}^{\mathsf{T}} \quad \mathbf{y}$

In this equation:

- $\widehat{\theta}$ is the value of θ that minimizes the cost function.
- **y** is the vector of target values containing $y^{(1)}$ to $y^{(m)}$.
- X^T Transpose matrix of X; i.e. mirror values along the diagonal: <u>https://en.wikipedia.org/wiki/Transpose</u>

Zealand

Closed Form: Evaluation

Typical complexity for closed form computations:

- Training the model with *m* feature instances is complexity O(m) proportional to number of instances m
- Training the model with *n* features is complexity $O(n^{(>2)})$ proportional to quadratic number of features $n^{(2)}$
 - – e.g. increasing *n* by a factor 2 will increase processing resources needed by $2^2=4$
 - - e.g. increasing *n* by a factor 10 will increase processing resources needed by $10^2 = 100$! That's 100 times slower
 - Processing resources are time and memory
 - Advantage: Simple to compute
 - Disadvantage: Slow for high number of features (n > 10.000)
 - Examples: predicting on basis of the human genom
 - We are lucky. Why? There is the Gradient Descent Algorithms for these cases.
 - BUT let us look at some code first.